一、测风塔结构形式设计
常见的测风塔结构形式有自立式和拉线式两种。自立式测风塔塔体下部较宽,塔架材料用量相对较大,对基础要求也较高;拉线式测风塔受力较为合理,可靠性高,塔体截面小,塔架材料用量小,但拉线基础数量多,施工工艺复杂。
测风塔塔架可采用单根钢管、三角形桁架及四边形桁架等结构形式。单根钢管结构形式所需钢管直径大,迎风面积亦大,材料量大;三角形桁架结构形式较为稳定,塔架受风荷载作用较小,***为经济;四边形桁架结构形式较为稳定,一般情况下当三角形桁架不能满足受力及变形要求或不经济时,塔架可选用四边形桁架结构形式。
测风塔为高耸结构建筑物,一般采用桩基础或重力式基础等。适用于测风塔的桩基础有钻孔灌注桩、预制混凝土桩、钢管桩等。采用钻孔灌注桩时,需水下浇注混凝土,且施工周期长;采用预制混凝土桩时,需考虑接桩,打入较难,且承台不宜采用钢结构,施工周期长;采用钢管桩时,桩长小于50m时无需接桩,施工方便,但费用略高。钢管桩基础受力情况明确,抵抗极端工况的能力较强,尤其是海底洋流对钢管桩基础的影响较小,但其施工工艺较为复杂和海上防腐要求较高。重力式基础结构简单,施工方便且较为经济,但其体型较大,在海洋中受到的各种作用力复杂,受力情况不明确,且存在海浪、洋流等淘刷作用,容易失稳或产生倾斜。综合考虑,测风塔采用钢管桩基础。
二、钢结构整体防腐设计
海洋环境对钢结构的腐蚀很大,为确保测风塔在正常测风期内不发生严重锈蚀,保证结构安全使用,需对钢结构进行防腐设计。
海上测风塔根据其暴露条件可分为大气区、浪溅区、潮差区、海水全浸区和海泥区等腐蚀区带,其中浪溅区和潮差区腐蚀***严重,其次是海泥交界处下方区域。不同的环境条件和暴露条件有不同的腐蚀规律,一般情况下应采取相应的防腐、保护技术措施。常用的防腐方法有热浸锌法、 热喷铝(锌)复合涂层法、涂层法和阴极保护法。
防腐按塔架、承台、桩等等部分进行要求,具体措施为:(a)钢管桩、钢承台、其他基础部分受力构件及下部5.5m的钢塔架按0.5mm/a的腐蚀速度预留腐蚀余量;(b)泥面下7m以上部分钢管桩:无机富锌环氧底漆两层厚75μm,环氧中间漆两层厚75μm,聚氨酯面漆两层厚50μm,漆膜干膜总厚度不小于20μm;(c)承台、上部塔架及其他钢结构采用热镀锌防腐,其镀锌量不小于275g/m2。
三、测风塔施工
3.1 基础施工
(1)桩基施工
桩基施工所需的船舶主要有打桩船、运桩船、抛锚船等。鉴于海上施工的特点,打桩船必须配备合适的桩锤,选用合适的施工工艺,尽可能提高沉桩效率,且应具有良好的可靠性。经调研分析,打桩船采用“三航桩2#”,桩锤选用D128开口柴油锤,并配900HP拖轮负责移船就位作业;运桩船选用自航驳;抛锚船选用当地常见的渔船。
打桩船沉桩的施工顺序为:起桩→立桩→插桩→锤击沉桩→停锤、移位→下一根桩起桩→…搭设围囹。根据打桩船特点和施工环境,计划测风塔基础施工工期为:准备工作及抛锚1.0d,沉桩施工1.5d,桩支撑结构及托板焊接3.0d,钢平台安装及焊接2.0d,安装爬梯、护舷、护栏1d,临时设施拆除1d,参考相关海上施工经验取气候影响系数2.5,则1个测风塔基础的实际作业工期定为24d。
打桩船锤击沉桩约需20min/根,收锤阶段实测贯入度约为1.0cm。打桩过程贯入度变化规律与勘探地质分层较为吻合。基础施工表明,所选的施工设备和施工工艺较为合理,勘探资料准确。
(2)施工船舶配合及安全控制措施
海上施工受风、浪、流影响较大,施工期间自航驳要运桩给打桩船,且要预防船舶与打好的桩发生碰撞。因此,各种船舶施工期间的配合需制定详细的作业计划和安全控制措施。
打桩船由拖轮运至施工点附近,采用八字形式抛锚,每个锚上设立浮漂。自航驳停泊在打桩船附近,由于外海作业受风浪影响较大,打桩船和自航驳间距保持在500m左右,自航驳亦设4根锚缆。
施打***根桩时,打桩船抛锚至预定桩位,自航驳起锚,行至打桩船打桩架一侧,将打桩船上的2根缆绳固定在自航驳上,通过收紧缆绳,令两船紧紧相靠且使其中心线保持互相垂直;打桩船下放吊钩,开始起桩;钢管桩水平脱离运桩驳船并至一定高度后,松开系在自航驳上的缆绳,让自航驳回至原位,打桩船准备打桩。施打其余桩时,打桩船通过调节其4根锚绳远离已打好的钢管桩,同时起锚自航驳,按照前述方法起桩;自航驳离开后,打桩船再通过调节其4根锚绳靠近已打好的桩,重新测量定位,开始打桩。
施工实践表明,所选用的船舶配合方法统筹安排较为合理。
(3) 打桩检测
测风塔采用钢管桩基础,且桩较少(4根),施打过程不仅需监测桩身完整性,更要对桩基承载力进行分析判断。因此,加强基桩施工过程中的质量控制和施工后的质量检测,对确保整个工程的质量与安全具有重要意义。由于海上施工受到特殊的场地条件限制,无法也不可能像陆地的基桩那样进行各种静力载荷试验,只能通过基桩检测获得设计所需各项参数,控制施工质量。高应变法是在桩顶沿轴向施加冲击力,使桩产生足够的贯入度,实测由此产生的桩身质点应力和加速度的响应,通过波动理论分析,判定单桩竖向抗压承载力及桩身完整性。高应变动力检测不仅能够有效地确定桩身结构完整性,而且能快速判定桩的承载力,省工、省时,节约费用。桩基检测采用PAK高应变桩基检测仪检测。
检测要求参照《建筑基桩检测技术规范》(JGJ106-2003),考虑到被检桩并非竖直桩,有一定的斜度,同时参考了美国的ASTM高应变动力检测标准(ASTMD4945),实际提供各桩的轴向抗压承载力。检测前的钢桩桩顶的高度自水面起约为8m,检测用的力传感器和加速度传感器距桩顶约1m,打桩锤重128KN。
3.2 承台吊装及塔架安装
待桩打完后,在桩间搭设加固平台进行围囹加固。现场焊接桩间斜支撑、平台托板及加劲板,并严格控制托板标高。焊接工作结束后起重船就位,先将钢承台吊至安装位置上方50cm~60cm左右,缓缓下降,人工辅助控制承台位置,承台套管对准桩后下放使其就位,检查调整承台水平度,满足要求后焊接承台套管与托板,安装护舷与爬梯。